

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 28 (2008) 2099–2107

www.elsevier.com/locate/jeurceramsoc

Surface strengthening of $Ti₃SiC₂$ through magnetron sputtering Cu and subsequent annealing

Haiping Guo^{a,b}, Jie Zhang^{a,c}, Fangzhi Li^{a,c}, Yi Liu^b, Jinjie Yin^b, Yanchun Zhou^{a,∗}

^a *Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,*

72 Wenhua Road, Shenyang 110016, China

^b *Liaoning Technical University, Fuxin 123000, China*

^c *Graduate School of Chinese Academy of Science, Beijing 100039, China*

Received 9 September 2007; received in revised form 10 January 2008; accepted 1 February 2008 Available online 18 April 2008

Abstract

Magnetron sputtering deposition Cu and subsequent annealing in the temperature range of 900–1100 ℃ for 30–60 min were conducted with the motivation to modify the surface hardness of T₁₃SiC₂. Owing to the formation of TiC following the reaction T₁₃SiC₂ + 3Cu \rightarrow 3TiC_{0.67} + Cu₃Si, the surface hardness was enhanced from 5.08 GPa to a maximum 9.65 GPa. In addition, the surface hardness was dependent on the relative amount of TiC, which was related to Cu film thickness, heat treatment temperatures and durations of annealing. Furthermore, after annealing at 1000 ◦C for 30 min the Cu-coated T₁₃SiC₂ has lower wear rate and lower COF at the running-in stage compared with T₁₃SiC₂ substrate. The reaction was triggered by the inward diffusion of Cu along the grain boundaries and defects of $Ti₃SiC₂$. At low temperature and short annealing time, i.e. 900 or 1000 °C for 30 min, Cu diffused inward Ti₃SiC₂ and accumulated at the trigonal junctions first. At higher temperature of 1100 °C or prolonging the annealing time to 60 min, considerable amount of Cu diffused to $T_{13}SiC_2$ and filled up the grain boundaries leaving a mesh structure. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Ti3SiC2; Surface strengthening; Magnetron sputtering; Microhardness; Tribological property

1. Introduction

In recent years, layered ternary carbides and nitrides, such as $Ti₃SiC₂$, $Ti₃AlC₂$, $Ti₂AlC$, $Ti₂SnC$ and $Ti₂AlN$, are attracting much attention owing to their unique combination of properties of both metals and ceramics. They have been recognized as materials for potential applications in various industrial fields. Among all these compounds, $Ti₃SiC₂$ has been most extensively investigated. It has low density, good thermal and electrical conductivity, high elastic moduli and easy machinability.^{1–4} However, compared with traditional binary carbides, for instance TiC, its hardness and wear resistance are relatively low, which limit its widespread applications. Therefore, surface strengthening to modify the properties of $Ti₃SiC₂$ without losing its intrinsic merits is of vital importance.

In order to enhance the surface hardness of $Ti₃SiC₂$, El-Raghy and Barsoum^{[5](#page-8-0)} altered its surface chemistry through two ways: carburization and silicidation. Reaction of $Ti₃SiC₂$ with graphite foils in the temperature range of 1400–1600 °C resulted in the formation of a 15 vol.% porous surface layer of TiC_x (where $x > 0.8$), which increased the surface hardness from 4 to 20–25 GPa. While in the process of silicidation, reaction of $Ti₃SiC₂$ with silicon wafers in the temperature range of 1200–1350 ◦C resulted in the formation of a dense surface layer composed of a two-phase mixture of TiSi₂ and SiC, which also increased the surface hardness to $10-12$ GPa. Li et al.⁶ improved the surface hardness and wear resistance of $Ti₃SiC₂$ by boronizing treatment, which was carried out through powder pack cementation in the temperature range of 1100–1400 ◦C. A maximal hardness of 9.3 GPa was obtained with the formation of a layer of TiB₂ and β -SiC mixture, meanwhile its wear resistance was also significantly improved.

It is well known that the crystal structure of $Ti₃SiC₂$ can be considered as two-dimensional closed packed layers of Si periodically intercalated into the $(1\ 1\ 1)$ twin boundary of TiC_{0.67} $(Ti₃C₂)$.^{[7](#page-8-0)} The de-intercalation of Si from Ti₃SiC₂ caused the

[∗] Corresponding author. High-performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China. Tel.: +86 24 23971765; fax: +86 24 23891320.

E-mail address: yczhou@imr.ac.cn (Y. Zhou).

^{0955-2219/\$ –} see front matter © 2008 Elsevier Ltd. All rights reserved. doi[:10.1016/j.jeurceramsoc.2008.02.011](dx.doi.org/10.1016/j.jeurceramsoc.2008.02.011)

topological transformation from hexagonal $Ti₃SiC₂$ to cubic $TiC_{0.67}$. Obviously, when the de-intercalation takes place, the as-formed TiC will increase the hardness of $Ti₃SiC₂$. Thus the motivation for this work is to induce the topological transformation at the surface of $Ti₃SiC₂$, which could take place when it contacts in Cu,^{[8](#page-8-0)} Ni,^{[9](#page-8-0)} graphite,^{[5](#page-8-0)} molten cryolite^{[10](#page-8-0)} and liquid Al[.11](#page-8-0) Since Cu films can be deposited readily by magnetron sputtering, which is a well-established technology with lower working gas pressure and higher sputtering rate, 12 in the present work, to enhance the surface hardness and wear resistance, a thin layer of Cu was deposited on $Ti₃SiC₂$ followed by annealing at high temperature. In addition, the reaction products, microstructure, Vickers hardness and tribological properties of the reaction layer were investigated.

2. Experimental procedures

2.1. Substrate material

The bulk $Ti₃SiC₂$ used in this work was fabricated by an in situ hot pressing/solid–liquid reaction process, which was described in detail elsewhere.^{[3](#page-8-0)} The measured density of $Ti₃SiC₂$ was 97% of the theoretical value, which was determined by the Archimedes' immersion method. The $Ti₃SiC₂$ substrate was cut into rectangular specimens of $8 \text{ mm} \times 8 \text{ mm} \times 2 \text{ mm}$ by electrical discharge method from an as-fabricated bulk piece. The surfaces used for sputter deposition were ground down to 1500 grade SiC paper, mechanically polished using $1.5 \mu m$ diamond paste to ensure a flat and mirror-like surface, and then ultrasonically cleaned in ethanol and acetone individually for 10 min before they were transferred into the sputter chamber.

2.2. Deposition of Cu

A JGP560C14 ultrahigh vacuum (UHV) magnetron sputtering deposition system (SKY Technology Development Co. Ltd, Shenyang, China) was used in depositing polycrystalline Cu films onto $Ti₃SiC₂$ substrate. A schematic diagram of a direct current (dc) magnetron sputtering system used in the present work is shown in Fig. 1. Copper target of 99.99% purity with 60 mm in diameter was used. During deposition, the substrates were kept static with the substrate-to-target separation (d_{s-1}) of 60 mm to ensure an identical condition for each run. The sputtering chamber was evacuated to a base pressure of \sim 5 × 10⁻⁴ Pa, and then backfilled with high purity argon to the required coating pressure at 0.4–0.5 Pa with a gas flow rate of generally 20 sccm. Cu film deposition process was carried out under the dc power of 100 W, meanwhile a negative dc bias of 100 V was applied to the substrate. The detailed process parameters are listed in Table 1. Prior to deposition, the pure copper target was presputtered for 5 min in order to remove the contaminants and oxides on the surface. During the target cleaning, a shield was interposed between the target and the substrate to avoid the substrate contamination. Although there was no deliberate attempt at heating the substrates, the temperature of the films rose as high as ∼70 ◦C during magnetron sputtering as a result of the

Fig. 1. Schematic illustration of a magnetron sputtering system.

condensing of the sputtered atoms—the heat of condensation plus their kinetic energy.

2.3. Annealing process

After deposition, the Cu-coated $Ti₃SiC₂$ samples were annealed in order to obtain a layer composed of TiC and copper silicides. There was no apparent reaction between $Ti₃SiC₂$ and Cu at temperatures below 900 ◦C, according to previous work on high-temperature reaction between $Ti₃SiC₂$ and Cu by Zhou et al. $⁸$ Thus, attention was only paid to the samples</sup> annealed at temperatures above 900 ◦C. In this work, Cu-coated $Ti₃SiC₂$ were annealed at various temperatures ranging from 900 to 1100 °C for 30–60 min in a horizontal tube furnace under flowing argon atmosphere. The detailed process parameters are listed in [Table 2.](#page-2-0)

Table 1

Parameters for the deposition of Cu on Ti₃SiC₂ by magnetron sputtering method

Target source	Cu (diameter: 60 mm)		
Substrate	$Ti3SiC2$ (dimension:		
	$8 \text{ mm} \times 8 \text{ mm} \times 2 \text{ mm}$		
Sputtering gas	Ar		
Base pressure (Pa)	5×10^{-4}		
Gas partial pressure (Pa)	$0.4 - 0.5$		
Gas flow rate (sccm)	20		
dc sputtering power (W)	100		
Negative dc bias applied to the substrate (V)	100		
Substrate temperature ^a $(^{\circ}C)$	70		
Substrate-target distance (mm)	60		
Deposition time (h)	$2\neg 6$		
Deposition rate $(\mu m/min)^b$	0.17		

^a Although there was no deliberate attempt at heating the substrates, the temperature of the films rose as high as ∼70 ◦C during magnetron sputtering as a result of the condensing of the sputtered atoms—the heat of condensation plus their kinetic energy.

 b The thickness of the film is measured using a HXD-1000B digital micro-</sup> hardness tester and the growth rate is calculated from the film thickness obtained for a given deposition time.

Table 2 Annealing parameters of Cu-coated $Ti₃SiC₂$

Sputtering	Thickness of Cu Film (μm)	20	40	60
Annealing	Temperature $(^{\circ}C)$	900	1000	1100
	Duration (min)	30	30	30
		60	60	60

2.4. Characterization of the reaction layer

X-ray diffraction (XRD, Rigaku D/max-2400, Japan) with Cu $K\alpha$ radiation was used to identify the annealing-induced reaction products. Lattice parameters and relative amount of the phases in the reaction layer were calculated using the Rietveld method, 13 which was accomplished in a DBWS code in the Cerius² computational program for material research (Molecular Simulation Inc., USA). The intensity of the XRD profile is represented by

$$
I_{\text{Rietveld}}(2\theta) = b(2\theta) + s \sum_{K} L_K |F_K|^2 \phi(2\theta_i - 2\theta_K) P_K A_K \quad (1)
$$

where $b(2\theta)$ is the background intensity, *s* is a scale factor, L_k contains the Lorentz, polarization and multiplicity factor, ϕ is the profile function, P_K is the preferred orientation function, A_K is the absorption factor and F_K is the structure factor. The subscript *K* represents Miller indices for the Bragg reflections.

A scanning electron microscope (SEM, LEO Super 35, Germany) equipped with an energy dispersive spectroscope (EDS) system was employed to investigate the morphological evolution of the surface and cross-section of the sample after annealing.

Vickers hardness of the reaction layer was determined by an HXD-1000B (Shanghai Taiming optical Inc., China) digital microhardness tester at a load of 1 N with a dwell time of 15 s. Ten measurements were carried out for each sample. The results were free from substrate effect according to the 1/10 rule.^{[14](#page-8-0)}

Tribological property was conducted on a ball-on-disk reciprocating type computerized fretting tribometer (CETR UMT-2, USA) at constant normal loads. The friction coefficient was obtained from the on-line measured tangential force. $Ti₃SiC₂$ and Ti₃SiC₂ with 40 μ m Cu coating after annealing at 1000 °C for 30 min in the dimension of 16 mm \times 4 mm \times 3 mm were used as flat samples, which oscillated over the desired displacement. The commercial bearing AISI 52100 grade steel balls (hardness 55 HRC) of 4.76 in diameter were used as counterbody (stationary). Before each test, the specimen and ball were ultrasonically cleaned with acetone. The fretting wear experiments were carried out under varying loads (1 and 5 N) with constant testing duration (120 min), at constant frequency (3.3 Hz) and constant displacement stroke (8.46 mm). All tests were done in air at room temperature (28 \pm 1 °C) with relative humidity of RH $49 \pm 3\%$. After each test, the worn surfaces of both the flat and the ball were ultrasonically cleaned with acetone. The surface roughness was obtained by a stylus instrument (JB-4C precision surface roughness meter, Shanghai Taiming Optical Inc., China). From the estimated wear volume, the specific wear rates (wear volume/(load \times total fretted distance)) were calculated.

3. Results

3.1. Reactions between Ti3SiC2 and Cu film

Fig. 2 shows the X-ray diffraction patterns of (a) $Ti₃SiC₂$ substrate, (b) $Ti₃SiC₂ coated with 20 μ m Cu, and (c-h) Cu-coated$ Ti₃SiC₂ after annealing in the temperature range of 900–1100 °C for 30 and 60 min. It is seen from Fig. 2a that a minor amount of TiC exists in the as-prepared $Ti₃SiC₂$ substrate. After sputtering for 2 h, only diffraction peaks of Cu for the as-deposited sample can be observed (Fig. 2b). Upon further annealing, in Fig. 2c–h, the Cu peaks disappear, while diffraction peaks of Cu₃Si simultaneously appear at 2 θ values of 44.76 \degree and 45.24 \degree which can be assigned as Cu₃Si (3 2 0) and Cu₃Si (3 1 2).^{15,16} Moreover, the peak intensity of TiC (200) also increases which indicates that TiC is one of the reaction products. Therefore, $Ti₃SiC₂$ reacted with Cu under the annealing conditions to form TiC and Cu–Si intermetallic compound $Cu₃Si$ according to the following reaction:

$$
Ti_3SiC_2 + 3Cu \to 3TiC_{0.67} + Cu_3Si.
$$
 (2)

The relative amount and lattice parameters of $Ti₃SiC₂$ and TiC_x (here TiC_x is used owing to the wide homogeneous composition region of carbon) in $Ti₃SiC₂$ substrate and Cu-coated $Ti₃SiC₂$ after annealing were calculated using the Rietveld method. In all Rietveld simulations, it was performed using the cubic structure for TiC. Meanwhile, the reliability factors, i.e., R-P and R-WP values, are less than 10%, as shown in [Table 3.](#page-3-0) After annealing at $1000\,^{\circ}\text{C}$ for 30 min, it can be seen that the

Fig. 2. X-ray diffraction patterns of (a) $Ti₃SiC₂$ substrate, (b) $Ti₃SiC₂$ coated with 20 μ m Cu, (c) 20 μ m Cu-coated Ti₃SiC₂ after annealing at 1000 °C for 30 min, 40 μ m Cu-coated Ti₃SiC₂ after annealing at (d) 900 °C for 30 min, (e) 1000 °C for 30 min, (f) 1100 °C for 30 min, and (g) 1000 °C for 60 min, and (h) 60 μ m Cu-coated Ti₃SiC₂ after annealing at 1000 °C for 30 min.

"20 μ m 1000 °C to 30 min" in the first column denotes Ti₃SiC₂ coated with 20 μ m Cu after annealing at 1000 °C for 30 min. So do the others.

relative amount of TiC_x increases with increasing the thickness of Cu films, i.e., 20.1, 23.9 and 27.3 wt.% for samples with a Cu film of 20, 40 and 60 μ m, respectively. For a fixed Cu film thickness of 40 μ m, the relative amount of TiC_x increases with increasing the heat treatment temperature below 1000 ◦C, and then drops appreciably at 1100 ◦C. Similar trend can be observed for the annealing duration changed from 30 to 60 min at 1000 ◦C.

3.2. Surface morphology

[Fig. 3a](#page-4-0) shows the back-scattered electron image of $Ti₃SiC₂$ coated with 40 μ m Cu after annealing at 900 °C for 30 min. The gray grain-marked TSC, dark grain-marked TC, and white particles are $Ti₃SiC₂$ substrate, Ti_x and Cu₃Si, respectively, which were identified by analyzing the EDS spectra in [Fig. 3b–](#page-4-0)d. As shown in [Fig. 3a,](#page-4-0) the dark grain of TiC_x is surrounded by the white particles of Cu₃Si, which indicates that $Ti₃SiC₂$ reacted with Cu to form Cu₃Si leaving a cubic phase of TiC_x. Another characteristic can be observed in [Fig. 3a](#page-4-0) is the appearance of grain boundary of $Ti₃SiC₂$, which is due to the diffusion of Cu and the formation of a new phase at the grain boundaries. In order to recognize the new phase, line scan across the grain boundaries was conducted and the result was presented in [Fig. 4.](#page-4-0)

[Fig. 4](#page-4-0) shows the back-scattered electron image of a $40-\mu m$ Cu-coated Ti₃SiC₂ after annealing at 1000 °C for 60 min and the concentration profile of Ti, Cu and Si along the line in [Fig. 4a.](#page-4-0) The most impressing character in [Fig. 4](#page-4-0) is that the Cu content across the grain boundaries, as marked G1, G2, G3, G4 and G5, is much higher, while the Ti and Si content at these positions are relatively low. These results imply that Cu diffused along the grain boundary into $Ti₃SiC₂$ substrate and reacted with Si at the grain boundary to form $Cu₃Si$.

3.3. Cross-section microstructure

From the above results, it is known that both the white particles and the grain boundary phase are $Cu₃Si$. [Fig. 5a–](#page-5-0)d shows the back-scattered electron images of cross-sections of $Ti₃SiC₂$ coated with $40 \mu m$ Cu after annealing at the temperature range of 900–1100 °C for 30–60 min. As shown in [Fig. 5a,](#page-5-0) the diffusion distance of Cu is more than $100 \mu m$ in the sample annealed at 900 ◦C. While in [Fig. 5b,](#page-5-0) the amount of white particles pronounced increased compared with that in [Fig. 5a,](#page-5-0) indicating the amount of Cu diffused further inward the $Ti₃SiC₂$ substrate at 1000 °C. At 1100 °C [\(Fig. 5c\)](#page-5-0), besides white particles, the white grain boundary phase is clearly observed. Thus, we can conclude that the distance and amount of Cu diffused inward the $Ti₃SiC₂$ substrate increases with increasing annealing temperature. Similar trend is seen in [Fig. 5d](#page-5-0) by prolonging the duration to 60 min at 1100 ◦C.

In order to identify the diffusion path of Cu, highmagnification images were also observed as shown in [Fig. 6.](#page-5-0) At 900 $\mathrm{^{\circ}C}$ (in [Fig. 6a\)](#page-5-0), white Cu₃Si particles with regular shape, e.g. triangle particles, can be observed which reveals that Cu diffused along the defects and grain boundary of $Ti₃SiC₂$ substrate and accumulated at the gap between adjacent $Ti₃SiC₂$ grains first. At higher temperature of $1100\,^{\circ}\text{C}$, a reticular structure is formed as shown in [Fig. 6b](#page-5-0), which reveals that considerable amount of Cu diffused into $Ti₃SiC₂$ and filled up the grain boundaries.

3.4. Microhardness

Microhardness with the relationship of (a) thickness of Cu films, (b) heat treatment temperatures, and (c) heat treatment duration are shown in [Fig. 7.](#page-6-0) It can be observed from [Fig. 7a](#page-6-0) that the surface of $Ti₃SiC₂$ was strengthened from 5.08 GPa to a maximum of 9.65 GPa after annealing and the microhardness of the annealed samples increases with increasing the thickness of Cu films, which are consistent with the relative amount of TiC*x*. While in [Fig. 7b](#page-6-0), the microhardness increases with increasing annealing temperature and a plateau appears at 1000 ◦C followed by a slight drop with further increasing the annealing temperature to $1100\degree C$. In [Fig. 7c](#page-6-0), an increase in hardness can be observed after annealing for 30 min, while a decrease is seen with further prolonging the duration to 60 min for samples annealed at 900–1100 $°C$. The analogous trend of microhardness versus heat treatment temperatures and duration is also consistent with that of relative amount of TiC_x . Therefore, higher microhardness can be expected when the amount of TiC_x is relatively higher. Meanwhile, owing to the discontinuity of TiC_x , the corresponding standard deviation becomes bigger after annealing.

Fig. 3. (a) Back-scattered electron image of $Ti₃SiC₂$ coated with 40 μ m Cu after annealing at $900\,^{\circ}$ C for 30 min, (b) EDS of the gray grain marked TSC in (a), (c) EDS of the dark grain marked TC in (a), and (d) EDS of the white particles in (a) .

3.5. Tribological Properties

[Fig. 8](#page-6-0) plots the frictional behavior of $Ti₃SiC₂$ and $Ti₃SiC₂$ with 40 μ m Cu coating after annealing at 1000 °C for 30 min (termed as surface strengthened $Ti₃SiC₂$ for short) fretted against steel under the load of (a) 5 N and (b) 1 N, respectively. From [Fig. 8,](#page-6-0) it can be noted that during the steady stage the COF of Ti₃SiC₂/steel and surface strengthened Ti₃SiC₂/steel are equivalent, lies around 0.4 and 0.5∼0.6 for the fretting load of 5 N and 1 N, respectively (see [Table 5\).](#page-6-0) The only difference between them is that the latter has lower COF (0.18 for 5 N, 0.23 for 1 N) at the running-in stage. From the surface rough-

Fig. 4. (a) Back-scattered electron image of $Ti₃SiC₂$ coated with 40 μ m Cu after annealing at 1000 ◦C for 60 min, (b) EDS line scans taken along the straight line shown in (a).

ness shown in [Fig. 9,](#page-7-0) it is evident that the abrasive grooves of $Ti₃SiC₂/steel$ are deeper than that of surface strengthened $Ti₃SiC₂$ steel both under the fretting loads of 5 N and 1 N. Consequently, in the present case the wear rates of $Ti₃SiC₂/steel$ are higher than that of Cu-coated $Ti₃SiC₂$ after annealing against steel under 1 N or 5 N. The wear rates are calculated and listed in [Table 5.](#page-6-0)

4. Discussions

It is known that Si is de-intercalated from $Ti₃SiC₂$ in the presence of Cu at high temperatures. The de-intercalation of Si from $Ti₃SiC₂ causes the decreasing of *c*-axis and results in the vol-$ ume shrinkage.^{[5,10](#page-8-0)} From [Table 3,](#page-3-0) it can be seen that the lattice constants of $Ti₃SiC₂$ decreases after annealing, especially for the *c*-axis. Therefore, Cu-coated Ti₃SiC₂ transformed to substoichiometric $Ti_3Si_xC_2$, i.e. $x < 1$, at elevated temperature by the de-intercalation of Si. When the Si content of the defective $Ti₃SiC₂$ is seriously reduced, i.e. less than the threshold Si content constituted of $Ti₃SiC₂$ layered structure, the topological transformation from hexagonal $Ti₃SiC₂$ to cubic Ti_x happens. Similarly, in the previous investigation of structure stability of $Ti₃AIC₂$ in Cu,^{[17](#page-8-0)} the reaction was determined to be diffusion of Al from $Ti₃AIC₂$ into Cu to form Cu(Al) solid solution first, while $Ti₃AIC₂$ retained its structure under the partial loss of Al. And then further depletion of Al resulted in highly defective $Ti₃AIC₂$. When all Al was removed, $Ti₃AIC₂$ decomposed and transformed into cubic TiC*x*.

Theoretically, the transformed TiC_x ($x = 0.67$) is substoichiometric. Here the '*x*' value can be calculated by the

Fig. 5. Back-scattered electron images of the cross-section of Ti₃SiC₂ coated with 40 μ m Cu after annealing at (a) 900 °C, (b) 1000 °C, (c) 1100 °C for 30 min and (d) $1100\degree$ C for 60 min, showing the distribution of Cu.

Fig. 6. High-magnification images of cross-section of Cu-coated Ti₃SiC₂ after annealing at (a) 900 °C and (b) 1100 °C for 60 min, showing the diffusion path of Cu.

reported variation of lattice spacing with composition of TiC*x* by Ehrlich $(1949)^{18}$ $(1949)^{18}$ $(1949)^{18}$ as listed in [Table 3. I](#page-3-0)t can be seen that after annealing the value x is lower than that of the stoichiometric TiC. The reduced tendency implies that the occurrence of the transformation from Ti₃SiC₂ to TiC_x. But the value *x* for the 40μ m Cu-coated Ti₃SiC₂ after annealing at 1000 °C for 60 min is equal to 1, which implies that the transformation is mild and the as-formed TiC_x is relatively less.

In [th](#page-8-0)e previous work, 8 the chemical reaction between Ti₃SiC₂ and Cu at elevated-temperature could form various Cu–Si intermetallic compounds, such as $Cu₅Si$, $Cu₅Si₄$ and η (Cu₃Si). While in the present study, a single copper silicide $Cu₃Si$ was obtained. The formation mechanism of Cu₃Si can be explained as follows. Here a thin Cu film was used, i.e. the relative amount of Cu is less while Si is excessive. Therefore, the copper sili-

cide with more content of Si is preferential to form. From the binary phase diagram of $Cu-Si$,^{[19](#page-8-0)} it is known that there are six kinds of copper silicide including Cu(Si) solid solution (Table 4). As shown in Table 4, Cu₃Si contains maximum amount of Si among all the copper silicides. Thus $Cu₃Si$ is formed at the

Table 4 Atomic percentage of Si in copper silicide

	Composition, at % Si		
Cu(Si)	$0 - 1.5$		
Cu ₇ Si	$11.05 - 14.5$		
Cu ₅ Si	$17.15 - 17.6$		
Cu ₄ Si	$17.6 - 19.6$		
Cu ₁₅ Si ₄	$21.2 - 21.3$		
Cu ₃ Si	$22.2 - 25.2$		

Table 5 Coefficient of friction and wear rate of $Ti₃SiC₂$ and surface-strengthened $Ti₃SiC₂$

Materials	Load(N)	COF			Wear rate $(mm^3/(Nm))$
		Running-in	Duration	Steady	
Ti ₃ SiC ₂		Not visible		0.46 ± 0.03	3.26×10^{-2}
$Ti3SiC2$ after treated		0.23 ± 0.01	$1000 - 2500$ s	0.58 ± 0.02	2.19×10^{-3}
Ti ₃ SiC ₂		Not visible		0.43 ± 0.02	7.38×10^{-3}
$Ti3SiC2$ after treated		0.18		0.38 ± 0.07	1.30×10^{-3}

Fig. 7. (a) Microhardness vs. thickness of Cu films, (b) microhardness vs. heat treatment temperature, and (c) microhardness vs. heat treatment duration.

present condition. Whereas the microhardness of $Cu₃Si$ was reported by Olofinjana^{[20](#page-8-0)} to be ∼3 GPa under a load of 15 g, which is lower in comparison with $Ti₃SiC₂$. Hence, there is no contribution to the surface strengthening of $Ti₃SiC₂$. On the other side, the molar amount of $Cu₃Si$ is two times lower than that of as-formed TiC. So the effect of $Cu₃Si$ is not taken into account.

From the results in the previous section, it is known that the relative amount of TiC_x is dependent on Cu film thickness, heat

treatment temperature and annealing time. As shown in [Fig. 10a,](#page-7-0) it increases with the increasing thickness of Cu film, which indicates that the amount of Cu is an important factor in affecting the reaction between $Ti₃SiC₂$ and Cu. While in [Fig. 10b,](#page-7-0) it increases with the increasing annealing temperature below 1000 °C and then decreases a little bit at $1100\,^{\circ}$ C. Similarly in [Fig. 10c](#page-7-0), it increases after annealing for 30 min and then decreases with prolonging the duration to 60 min. In general, enhancing the heat treatment temperature and prolonging the duration, the

Fig. 8. Evolution of friction coefficient vs. sliding time under (a) 5 N and (b) 1 N.

Fig. 9. Surface roughness of Ti₃SiC₂ slip wear under 5 N (a) and 1 N (b); surface roughness of the surface strengthened Ti₃SiC₂ slip wear under 5 N (c) and 1 N (d).

Fig. 10. Evolution of the relative amount of TiC_x vs. (a) thickness of Cu films, (b) heat treatment temperature and (c) heat treatment duration.

reaction becomes stronger. However, Cu is fairly active at high temperature and diffuses towards $Ti₃SiC₂$ substrate intensively. At higher temperature or longer duration, more amount of Cu diffused inward the $Ti₃SiC₂$ substrate. In addition, Cu may be volatilized at 1100 °C above its melting point (1083 °C). So that the relative amount of Cu near the surface reduced. Therefore, the interfacial reaction products between Cu layer and $Ti₃SiC₂$ substrate at surface becomes less at $1100\degree C$ or with prolonging the duration to 60 min. Owing to the dependence of the relative amount of TiC_x on microhardness, the maximal microhardness is expected to obtain at $1000\,^{\circ}\text{C}$ for 30 min. It is really disappointing that the corresponding standard deviation is large which is strongly dependent on the distribution of TiC_x . It can be seen from [Fig. 3a](#page-4-0) that TiC_x is accompanied by Cu. In other words, the presence of Cu at the grain boundary induced de-intercalation of Si from Ti₃SiC₂ to form TiC_x and the diffusion ability of Cu is so strong that the formed TiC_x is discontinues.

The tribological results revealed that surface strengthened $Ti₃SiC₂/steel presents equivalent COF at the steady stage but$ lower COF at the running-in stage compared with $Ti₃SiC₂/steel$ couple, regardless of the load. Moreover, surface strengthened $Ti₃SiC₂$ has lower wear rate. In the previous investigation of fretting wear of Ti_3SiC_2 ,^{[21](#page-8-0)} the major mechanisms contributing to the process of friction and wear includes: (a) abrasion, (b) tribochemical layer formation and (c) plastic deformation. Compared with monophase $Ti₃SiC₂$, the improvements of both the running-in stage COF and the wear rate of surface strengthened $Ti₃SiC₂$ are attributed to the formation of TiC_x.

5. Conclusions

In order to improve the surface hardness and wear resistance of $Ti₃SiC₂$, magnetron-sputtering deposition Cu and subsequent annealing were conducted in the temperature range of 900–1100 °C for 30–60 min. Owing to the formation of TiC_x following the reaction Ti₃SiC₂ + 3Cu \rightarrow 3TiC_{0.67} + Cu₃Si, the surface hardness was enhanced from 5.08 GPa to a maximum 9.65 GPa. The relative amount of TiC depends on three factors, thickness of Cu films, heat treatment temperatures and annealing times. First, it increases with the increasing thickness of Cu film. Second, it increases with increasing heat treatment temperature below 1000 ◦C while decreases at 1100 ◦C. Third, it increases with increasing the duration below 30 min while decreases with prolonging the duration to 60 min. Furthermore, $Ti₃SiC₂$ with $40 \mu m$ Cu-coating after annealing at 1000 °C for 30 min has lower wear rate and lower COF at the running-in stage compared with $Ti₃SiC₂$ substrate. The reaction between $Ti₃SiC₂$ and Cu is triggered by the pronounced interdiffusion of Cu and Si. Cu diffuses inward $Ti₃SiC₂$ along the grain boundaries and accumulates at the trigonal holes of $Ti₃SiC₂$ first. When considerable amount of Cu diffused to $Ti₃SiC₂$, it fills up the grain boundaries leaving a mesh structure. While in the presence of Cu, Si tends to de-intercalate from $Ti₃SiC₂$ along the basal plane. Cu-coated $Ti₃SiC₂$ is transformed to substoichiometric $Ti₃Si_xC₂$, i.e. $x < 1$, first. When the Si content of the defective $Ti₃SiC₂$ is seriously reduced, i.e. less than the threshold Si content constituted of $Ti₃SiC₂$ layered structure, the topological transformation from hexagonal Ti₃SiC₂ to cubic TiC_x happens.

Acknowledgements

This work was supported by the National Outstanding Young Scientist Foundation for Y.C. Zhou under Grant no. 59925208, Natural Sciences Foundation of China under Grant no. 50232040, no. 50302011, no. 90403027, and '863' project.

References

- 1. Barsoum, M. W. and El-Raghy, T., Synthesis and characterization of a remarkable ceramic: Ti₃SiC₂. *J. Am. Ceram. Soc.*, 1996, **79**, 1953–1956.
- 2. El-Raghy, T., Zavaliangos, A., Barsoum, M. W. and Kalidindi, S. R., Damage mechanisms around hardness indentations in Ti3SiC2. *J. Am. Ceram. Soc.*, 1997, **80**, 513–516.
- 3. Zhou, Y. C., Sun, Z. M., Chen, S. Q. and Zhang, Y., In situ hot pressing/solidliquid reaction synthesis of dense titanium silicon carbide bulk ceramics. *Mater. Res. Innovat.*, 1998, **2**, 142–146.
- 4. Barsoum, M. W., The $M_{N+1}AX_N$ phases: a new class of solids; thermodynamically stable nanolaminates. *Prog. Solid State Chem.*, 2000, **28**, 201–281.
- 5. El-Raghy, T. and Barsoum, M. W., Diffusion kinetics of the carburization and silicidation of Ti3SiC2. *J. Appl. Phys.*, 1998, **83**, 112–119.
- 6. Li, C., Li, M. S. and Zhou, Y. C., Improving the surface hardness and wear resistance of Ti₃SiC₂ by boronizing treatment. *Surf. Coat. Technol.*, 2006, **201**, 6005–6011.
- 7. Zhou, Y. C. and Sun, Z. M., Crystallographic relations between $Ti₃SiC₂$ and TiC. *Mater. Res. Innovat.*, 2000, **3**, 286–291.
- 8. Zhou, Y. C. and Gu, W. L., Chemical reaction and stability of $Ti₃SiC₂$ in Cu during high-temperature processing of Cu/Ti₃SiC₂ composites. *Z. Metallkd.*, 2004, **95**, 50–56.
- 9. Yin, X. H., Li, M. S. and Zhou, Y. C., Microstructure and mechanical strength of diffusion bonded Ti3SiC2/Ni joints. *J. Mater. Res.*, 2006, **9**, 2415–2421.
- 10. Barsoum, M. W., El-Raghy, T., Farber, L., Amer, M., Christini, R. and Adams, A., The topotactic transformation of $Ti₃SiC₂$ into a partially ordered cubic $Ti(C_{0.67}Si_{0.06})$ phase by the diffusion of Si into molten cryolite. *J*. *Electrochem. Soc.*, 1999, **146**, 3919–3923.
- 11. El-Raghy, T., Barsoum, M. W. and Sika, M., Reaction of Al with $Ti₃SiC₂$ in the 800–1000 ◦C temperature range. *Mater. Sci. Eng. A*, 2001, **298**, 174–178.
- 12. Chan, K. Y., Tou, T. Y. and Teo, B. S., Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique. *Microelectron. J.*, 2006, **37**, 608–612.
- 13. Young, R. A., *The Rietveld Method*. Oxford University Press, Oxford, UK, 1993, p. 1.
- 14. Musil, J., Kunc, F., Zeman, H. and Polakova, H., Relationships between hardness. Young's modulus and elastic recovery in hard nanocomposite coatings. *Surf. Coat. Technol.*, 2002, **154**, 304–313.
- 15. Yang, C. Y., Jeng, J. S. and Chen, J. S., Grain growth, agglomeration and interfacial reaction of copper interconnects. *Thin Solid Films*, 2002, **420–421**, 398–402.
- 16. Kuo, Y. L., Lee, C., Lin, J. C., Yen, Y. W. and Lee, W. H., Evaluation of the thermal stability of reactively sputtered (Ti, Zr) N_x nano-thin films as diffusion barriers between Cu and silicon. *Thin Solid Films*, 2005, **484**, 265–271.
- 17. Zhang, J., Wang, J. Y. and Zhou, Y. C., Structure stability of $Ti₃AIC₂$ into Cu and microstructure evolution of Cu-Ti₃AlC₂ composites. Acta Mater., 2007, **55**, 4381–4390.
- 18. Pearson, W. B., *A Handbook of Lattice Spacing and Structures of Metals and Alloys*. Pergamon Press, London, 1958, p. 949.
- 19. Olesinski, R. W. and Abbaschian, G. J., (*2nd ed.*). *Binary Alloy Phase Diagrams*, *vol. 2*ASM International, 1990, p. 1477.
- 20. Olofinjana, A. O. and Atrens, A., Properties of rapidly solidified binary copper alloys. *Mater. Lett.*, 1997, **31**, 87–92.
- 21. Sarkar, D., Mgnoj Kumar, B. V. and Basu, B., Understanding the fretting wear of Ti3SiC2. *J. Eur. Ceram. Soc.*, 2006, **26**, 2441–2452.